Using Subtree Crossover Distance to Investigate Genetic Programming Dynamics
نویسندگان
چکیده
To analyse various properties of the search process of genetic programming it is useful to quantify the distance between two individuals. Using operator-based distance measures can make this analysis more accurate and reliable than using distance measures which have no relationship with the genetic operators. This paper extends a recent definition of a distance measure based on subtree crossover for genetic programming. Empirical studies are presented that show the suitability of this measure to dynamically calculate the fitness distance correlation coefficient during the evolution, to construct a fitness sharing system for genetic programming and to measure genotypic diversity in the population. These experiments confirm the accuracy of the new measure and its consistency with the subtree crossover genetic operator.
منابع مشابه
Operator-Based Distance for Genetic Programming: Subtree Crossover Distance
This paper explores distance measures based on genetic operators for genetic programming using tree structures. The consistency between genetic operators and distance measures is a crucial point for analytical measures of problem difficulty, such as fitness distance correlation, and for measures of population diversity, such as entropy or variance. The contribution of this paper is the explorat...
متن کاملOn the roles of semantic locality of crossover in genetic programming
Locality has long been seen as a crucial property for the efficiency of Evolutionary Algorithms in general, and Genetic Programming (GP) in particular. A number of studies investigating the effects of locality in GP can be found in the literature. The majority of the previous research on locality focuses on syntactic aspects, and operator semantic locality has not been thoroughly tested. In thi...
متن کاملGeneral Schema Theory for Genetic Programming with Subtree-Swapping Crossover: Part II
This paper is the second part of a two-part paper which introduces a general schema theory for genetic programming (GP) with subtree-swapping crossover (Part I (Poli and McPhee, 2003)). Like other recent GP schema theory results, the theory gives an exact formulation (rather than a lower bound) for the expected number of instances of a schema at the next generation. The theory is based on a Car...
متن کاملModified Soft Brood Crossover in Genetic Programming
Premature convergence is one of the important issues while using Genetic Programming for data modeling. It can be avoided by improving population diversity. Intelligent genetic operators can help to improve the population diversity. Crossover is an important operator in Genetic Programming. So, we have analyzed number of intelligent crossover operators and proposed an algorithm with the modific...
متن کاملSemantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression
In this paper, we apply the ideas from [2] to investigate the effect of some semantic based guidance to the crossover operator of GP. We conduct a series of experiments on a family of real-valued symbolic regression problems, examining four different semantic aware crossover operators. One operator considers the semantics of the exchanged subtrees, while the other compares the semantics of the ...
متن کامل